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Genome editing holds great promise for increasing crop 
productivity, and there is particular interest in advancing 
breeding in orphan crops, which are often burdened by unde-
sirable characteristics resembling wild relatives. We developed 
genomic resources and efficient transformation in the orphan 
Solanaceae crop ‘groundcherry’ (Physalis pruinosa) and used 
clustered regularly interspaced short palindromic repeats 
(CRISPR)–CRISPR-associated protein-9 nuclease (Cas9) 
(CRISPR–Cas9) to mutate orthologues of tomato domestica-
tion and improvement genes that control plant architecture, 
flower production and fruit size, thereby improving these major 
productivity traits. Thus, translating knowledge from model 
crops enables rapid creation of targeted allelic diversity and 
novel breeding germplasm in distantly related orphan crops.

There has been extensive discussion on leveraging genome-
editing technologies to improve staple crops1, yet their application 
to regionally important plants grown for subsistence purposes is 
equally exciting, especially in developing countries. Such ‘orphan 
crops’ are relatively unknown and typically have not experienced 
intensive selection for domestication and improvement. Thus, 
orphan crops are less productive, untenable at larger agricultural 
scales, and benefit less from basic research2. Genome-editing tech-
nologies, such as the broadly successful clustered regularly inter-
spaced short palindromic repeats (CRISPR)–CRISPR-associated 
protein-9 nuclease (Cas9) (CRISPR–Cas9) provide opportunities 
to address these deficiencies, with primary goals to increase qual-
ity and yield, improve adaptation and expand geographical ranges 
of cultivation. The Solanaceae family contains many orphan crops 
alongside several well-characterized model crops, such as the 
tomato (Solanum lycopersicum), potato (Solanum tuberosum) and 
pepper (Capsicum annuum). This strong foundation of genetic, 
developmental and genomic knowledge makes the Solanaceae an 
excellent platform for translating genome editing to orphan crops.

We focused on the orphan crop Physalis pruinosa (ground-
cherry), a wild Solanaceae that is more distantly related to the 
tomato than the pepper, and which is grown in Central and South 
America for its subtly sweet berries3,4. Barriers to higher produc-
tivity and wider cultivation include a wild sprawling growth habit 
and small ~1 g fruits that drop to the ground due to strong stem 
abscission (Fig. 1a–g). These undesirable characteristics paral-
lel the wild ancestor of the tomato, Solanum pimpinellifolium, for 
which selection allowed major improvements in shoot architecture, 
flower production and fruit size5,6 (Fig. 1h–m). Although ground-
cherry and related Physalis species have the same chromosome 
number as most Solanaceae (n =  12)7, several challenges remain 

for gene editing, including the absence of reference genomes, lim-
ited information on gene content and function, and several archi-
tectural and fruit development traits that differ from the tomato 
(Fig. 1). However, considering its phylogenetic relationship with 
the tomato, its diploid genome and the fact that key developmen-
tal and productivity genes have similar functions across model 
Solanaceae8, we hypothesized that Physalis orthologues of select 
tomato domestication and improvement genes could be modified 
through editing for immediate improvements.

A major obstacle for CRISPR–Cas9 plant genome editing is lack 
of efficient tissue culture and transformation methodologies9. For 
editing of P. pruinosa to be realized, we developed Agrobacterium 
tumefaciens-mediated transformation modelled after our tomato 
methodology (Supplementary Methods), and evaluated editing 
by targeting the orthologue of the tomato leaf development gene 
Sl-AGO7 (where ‘Sl-’ relates to S. lycopersicum). This was previ-
ously used to test CRISPR–Cas9 in the tomato, because mutations 
result in conspicuous narrowing of the leaves and floral organs10. 
First-generation (T0) plants were chimeric for Ppr-AGO7 mutations 
(where ‘Ppr-’ relates to P. pruinosa) and, like tomato Sl-ago7CR chime-
ric T0 plants (where CR indicates CRISPR–Cas9-induced), the leaves 
and petals were narrower than in the wild type (Supplementary  
Fig. 1a,b), indicating efficient editing in the groundcherry.

To expand Physalis genomic resources beyond a leaf transcrip-
tome from the related Physalis peruviana, which lacked orthologues 
of several tomato domestication and improvement genes6,11–13, we 
generated Illumina whole-genome and RNA sequencing de novo 
assemblies from vegetative and reproductive tissues (Supplementary 
Methods). Analysis14 revealed 93 and 82% complete benchmarking 
universal single-copy orthologues for the transcriptome and genome 
assembly, respectively, and 12,993 orthologues of tomato genes were 
reconstructed with at least 90% coding sequence coverage.

With these tools, our first efforts focused on modifying ground-
cherry shoot architecture to contain its weedy growth habit. In the 
tomato, selection for mutations in florigen flowering pathway genes 
allowed major improvements in plant architecture and yield15. In 
particular, a classical missense mutation in the antiflorigen SELF-
PRUNING (SP) gene (spclassic) provided compact ‘determinate’ growth 
that translated to a burst of flowers and fruits, thereby enabling large-
scale field production16. SP encodes a flowering repressor that mod-
ulates sympodial growth—a hallmark Solanaceae and many other 
plant species—and mutations in the pepper SP orthologue cause a 
similar acceleration of sympodial cycling and shoot termination8.

We searched our groundcherry assemblies for SP homologues 
and related florigen family members, and phylogenetic analysis 
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revealed a probable orthologue of SP detected in both genome and 
transcriptome assemblies (Fig. 2a). We targeted Ppr-SP using two 
guide RNAs and found several out-of-frame insertion and deletion 
alleles in multiple chimeric T0 plants. Notably, these plants were 
more compact than the wild type, and we validated this phenotype in 
homozygous and biallelic null Ppr-spCR T1 progeny plants (Fig. 2b,c).  
Like the tomato spclassic mutant, primary shoot flowering time was 
unaffected in Ppr-spCR mutants (Fig. 2d). However, unlike the pro-
gressive sympodial termination of tomato spclassic plants, sympodial 
growth in Ppr-spCR plants ended immediately after flowering on 
both primary and axillary shoots, resulting in clusters of three or 
four fruits per shoot (Fig. 2e–g). Although potentially valuable for 
specific agronomic conditions, the severity of the Ppr-spCR pheno-
type suggests that null alleles could limit fruit production, similar to 
null tomato sp alleles that also terminate faster and cause more com-
pact plants compared with the weaker spclassic allele16,17 (not shown).

To identify other targets for plant architecture modification 
without negative effects on productivity, we used our phylog-
eny to identify the orthologue of SELF-PRUNING 5G (SP5G)  
(Ppr-SP5G), another florigen repressor (Fig. 2a)6. In the tomato, 
SP5G controls primary and canonical axillary shoot flowering time 
and is the major contributor to day-length sensitivity in wild tomato 
species. The groundcherry flowers quickly in long-day conditions, 
after around five leaves, suggesting little or no day-length sensitiv-
ity, which we confirmed by showing that flowering occurred one 
leaf faster in short-day conditions (Supplementary Fig. 1c). This 
weak response mirrors the cultivated tomato, where reduced SP5G  
activity was selected during domestication to mitigate day-length 
sensitivity. CRISPR–Cas9-induced null sp5g mutations in the 
tomato eliminate residual day-length sensitivity, causing even faster 
primary and axillary shoot flowering6.

To determine whether similar effects could be achieved in the 
groundcherry, we targeted Ppr-SP5G. Multiple chimeric T0 indi-
viduals showed more compact growth, but not as severe as in Ppr-
spCR, and these plants were also more floral (Fig. 2h,i). Surprisingly, 
homozygous null Ppr-sp5gCR T1 progeny carrying identical indepen-
dently derived deletion alleles were unaffected for primary shoot 
flowering (Fig. 2j). In contrast, sympodial shoots terminated more 
rapidly, but to a lesser degree than Ppr-spCR plants (Fig. 2c,i,k), 
explaining the difference in compactness. Importantly, this moder-
ate shoot termination resulted in up to 50% higher concentrations 
of fruits along each shoot, emulating the burst of fruit production 
in tomato spclassic mutants, and this effect became more pronounced 
with age (Fig. 2k,l). In addition to Ppr-sp5gCR plants showing greater 
agronomic potential than Ppr-spCR plants, phenotypic differences 
from mutations in orthologous Solanaceae florigen family members 
reflect how these conserved flowering regulators influence species-
specific sympodial growth patterns (Fig. 1).

An additional target trait for improving groundcherry productiv-
ity is fruit size. In the tomato, mutations in the classical CLAVATA 
(CLV)–WUSCHEL meristem size pathway were major contributors to 
boosting fruit size by increasing the locule number from the bilocular 
fruits of S. pimpinellifolium (Fig. 1l)5,12. In particular, the fasciated (fas) 
locus—an inversion that partially disrupts the promoter of the SlCLV3 
signalling peptide gene—was a major fruit size domestication quanti-
tative trait locus (QTL). In contrast, engineered null alleles of SlCLV3 
are undesirable due to excessive and disorganized production of flower 
and fruit organs17. Rather than creating a range of weak Ppr-CLV3 pro-
moter alleles, as we recently demonstrated for SlCLV317, we hypoth-
esized that a subtle increase in the locule number could be achieved 
by mutating the orthologue of the tomato CLV1 gene, encoding one 
of several redundant leucine-rich receptors of the CLV3 peptide,  
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Fig. 1 | The orphan Solanaceae crop P. pruinosa (groundcherry) exhibits similar traits to the wild tomato species S. pimpinellifolium. a,h, Both P. pruinosa 
(a) and S. pimpinellifolium (h) develop indeterminate shoot systems due to sympodial growth. b–d, P. pruinosa primary shoots terminate after the 
production of 5–6 leaves (photo in b; schematic in c) in a single-flowered inflorescence (d), and continue vegetative growth with sympodial shoot units 
of one leaf. i–k, Similarly, S. pimpinellifolium primary shoots terminate after the production of 7–9 leaves (photo in i; schematic in j) in a multi-flowered 
inflorescence (k), and vegetative growth continues with sympodial shoot units comprising three leaves and a new inflorescence. e,f,l,m, Both P. pruinosa 
(e and f) and S. pimpinellifolium (l and m) develop small ~1!g bilocular fruits (e and l) with pronounced abscission zones on the fruit pedicels (f and m; 
insets show magnified images). g, P. pruinosa fruits are encapsulated by an inflated calyx (husk). In c and j, light and dark green bars represent successive 
sympodial shoots, ovals are leaves, and coloured circles are maturing fruits. Scale bars!= !1!cm. In b and i, red arrowheads mark inflorescences. In f and m,  
cyan arrowheads mark fruit abscission zones. All images are representatives of wild-type P. pruinosa and S. pimpinellifolium from ten independently 
repeated experiments with similar results.
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Fig. 2 | CRISPR–Cas9 targeting of domestication and improvement-related genes in P. pruinosa. a, Phylogenetic tree of CENTRORADIALIS/TERMINAL 
FLOWER 1/SELF-PRUNING (CETS) family genes in the tomato (S. lycopersicum), Arabidopsis and groundcherry (P. pruinosa). Contigs from de novo 
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homologues are highlighted by red and orange coloured circles, respectively. Bootstrap values from 100 replicates are indicated on each node.  
b, CRISPR–Cas9 targeting of SP in P. pruinosa. Ppr-spCR mutant alleles identified by PCR and sequencing in T0 transgenic plants are shown. c, Ppr-spCR 
stable homozygous null T1 plants (middle and right) showing compact growth compared with the Ppr-SP+/+ control (left). d, Quantification of the 
primary shoot flowering time in Ppr-SP+/+ control and Ppr-spCR T1 plants. Statistical significance was determined by a two-tailed, two-sample t-test.  
n, number of biologically independent plants. e,f, Photos (e) and schematics (f) of shoot apices of Ppr-SP+/+ control (left) and Ppr-spCR T1 plants (right), 
showing immediate termination of sympodial shoots into flowers in Ppr-spCR. Vegetative growth continues from axillary shoots. AX, axillary shoot; Fl, 
flower; Fr, fruit; L, leaf; SYM, sympodial shoot. g, Formation of fruit clusters on Ppr-spCR T1 plants (right) compared with the Ppr-SP+/+ control (left). Red 
arrowheads indicate husked fruits. In c, e and g, representative images of Ppr-spCR homozygous T1 plants from six repeated independent experiments 
with similar results are shown. h, CRISPR–Cas9 targeting of SP5G in P. pruinosa. Ppr-sp5gCR mutant alleles identified by PCR and sequencing in T0 
transgenic plants are shown. i, Homozygous null Ppr-sp5gCR T1 plants. Note the more compact growth and fruit clusters in each sympodial unit.  
j, Quantification of primary shoot flowering time in Ppr-SP5G+/+ control and Ppr-sp5gCR T1 plants. Statistical significance was determined by a two-tailed, 
two-sample t-test. n, number of biologically independent plants. k, Ppr-sp5gCR T1 plants (right) exhibit shoot units with faster flower and fruit initiation 
and development compared with Ppr-SP5G+/+ controls (left). Red arrowheads mark fruits. In i and k, representative images of Ppr-sp5gCR T1 plants 
from two repeated independent experiments with similar results are shown. l, Quantification of fruits on five consecutive sympodial shoot nodes in 
Ppr-SP5G+/+ control and Ppr-sp5gCR T1 plants. Significance was determined by a two-tailed, two-sample t-test. n, number of biologically independent 
individual shoots. Backgrounds in c and g were darkened to highlight whole-plant architectures. In b and h, guide RNA targets and protospacer-
adjacent motif sequences are highlighted in red and bold font, respectively. Deletions and insertions are indicated by blue dashes and blue font, 
respectively. The sequence gap length is shown in parentheses. Scale bars, 1 cm. For all box plots (d, j and l), the bottom and top of boxes represent 
the first and third quartile, respectively, the middle line is the median, and the whiskers represent the maximum and minimum values. Hyphenated 
numbers following mutant allele names in b and h indicate the individual plant from which the allele was derived.
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and for which CRISPR–Cas9 null mutations moderately increase the 
locule number compared with fas12. Phylogenetic analysis revealed a 
clear orthologue of Ppr-CLV1 (Fig. 3a), which we targeted with two 
guide RNAs to produce chimeric plants that produced flowers with 
more organs compared with the wild type (Fig. 3b). Homozygous 
null Ppr-clv1CR T1 plants for a 7-base pair deletion validated this effect 
(Fig. 3b–e and Supplementary Fig. 1d–g), and nearly all fruits devel-
oped three locules, translating to a 24% increase in mass (Fig. 3f,g). A 
similar weak effect on the locule number caused by the tomato locule 
number (lc) regulatory mutation of the stem cell regulator WUSCHEL 
was the foundation for the selection of additional QTLs to create a 
range of larger tomato fruits5,17. Such an approach is now possible in 
the groundcherry by engineering the coding sequence and regulatory 
mutations in orthologues of other tomato fruit-size QTLs5,17.

Our study represents the first steps towards improving the ground-
cherry orphan crop, and we have already extended this work by 
targeting additional genes that we anticipate will benefit a range of 
agronomic and consumer quality traits, such as the homologue of the 
fruit abscission gene JOINTLESS-2 (ref. 13) (Supplementary Fig. 1h,i). 
Beyond these first targets, we are applying multiplex CRISPR–Cas9 of 
coding and regulatory sequences to simultaneously create qualitative 
and quantitative variation for multiple traits to rapidly enhance breed-
ing germplasm. While an immediate goal is to elevate the uniquely 
flavoured fruits of several Physalis species alongside the strawberry, 
blueberry, blackberry and raspberry as the elusive ‘fifth berry’ crop 
in large-scale agriculture, we also aim to demonstrate the speed at 
which other important orphan crops, such as the grass teff, pseudo-
cereal amaranth and legume cowpea, could be improved for regional 
production and potentially catapulted into mainstream agriculture by 
exploiting the large knowledge base of related model crops. Success  
will not be limited by gene-editing technologies per se, which con-
tinue to rapidly improve and expand18, but by the availability of  
efficient transformation methodologies. Alleviating bottlenecks will 
require open access to genome-editing technologies for both public 
and private entities, as well as highly efficient, genotype-independent 
gene-delivery approaches19,20.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Data availability
Raw data from this study have been submitted to the National Center for 
Biotechnology Information Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra)  
under accession number SRP142654. Transcriptome and genome assemblies have 
been deposited at the Sol Genomics Network (ftp://ftp.solgenomics.net).
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